Remote Sensing Change Detection Based on Unsupervised Multi-Attention Slow Feature Analysis

نویسندگان

چکیده

With the development of big data, analyzing environmental benefits transportation systems by artificial intelligence has become a hot issue in recent years. The ground traffic changes can be overlooked from high-altitude perspective, using technology multi-temporal remote sensing change detection. We proposed novel unsupervised algorithm combining image transformation and deep learning method. new for images is named multi-attention slow feature analysis (ASFA). In this model, three parts perform different functions respectively. first part records to K-BoVW classify categories objects as channel parameter. second residual convolution with multiple attention mechanisms including temporal, spatial, attention. Feature extraction updating are completed at link. Finally, we put updated features highlight variant components which want then generate map visually. Experiments on very high-resolution datasets verified that ASFA better performance than four basic detection algorithms an improved SFA algorithm. More importantly, model works well road helps us analyze changes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images

In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...

متن کامل

A Change Detection Method for Remote Sensing Image Based on Multi-feature Differencing Kernel Svm

Based on the support vector machine (SVM) tools and multiple kernel method, the combinations of kernel functions were mainly discussed. The construction method of image differencing kernel with multi-feature (spectral feature and textural feature) has been developed. Through this method and weighting of the categories’ samples, the improved SVM change detection model has been proposed, which co...

متن کامل

Unsupervised Change-Detection Methods for Remote-Sensing Images

An unsupervised change detection problem can be viewed as a classification problem with only two classes corresponding to the change and no-change areas, respectively. Thanks to its simplicity, image differencing is a widely used approach to change detection. It is based on the idea of generating a difference image that represents the modulus of the spectral change vector associated with each p...

متن کامل

Land cover land use mapping and change detection analysis using geographic information system and remote sensing

Land cover/land use categories are relevant components in land management. Understanding how land cover/land use change over time is necessary to assess the consequences of humans and natural stressors on the earth’s environment and resources. The aim of the study was to map and monitor the spatial and temporal change in land cover/land use for the periods of 1977, 1991 and 2016 and to predict ...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14122834